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"THE LONGITUDINAL STABILITY OF ELASTIC SWEPT
WINGS AT SUPERSONIC SPEED

By C. W. Frick and R. S. Chubb .

SUMMARY

The longitudinal stability characteristics of elastic swept
wings of high aspect ratio experiencing bending and torsional
deformations are calculated for ‘supersonic speed by the appli—~
cation of linearized lifting-surface theory. A parabolic wing
deflection curve is assumed and the analysis is simplified by
a number of structural approximations. The method is thereby
limited in application to wings of high aspect ratio for which the
root effects are small. Expressions for the 1lift, pitching-moment,
and span load distributlion characteristics are derived in terms of
the elastlic properties of the wing; namely, the design stress, the
modulus of elasticity, the shearing modulus, and the maximum design
load factor. The analysis applies to wings with leading edges swept
behind the Mach lines. In all cases, however, the trailing edge is
sonic or supersonic. Application of the method of analysis to wings
wilth leading edges swept ahead of the Mach lines is discussed.

The results of numerical calculations for a wing of aspect
ratio 3.2 and 60° sweepback are presented for a Mach number of
1.41%4 end for incompressible flow. The effects of wing elasticity
on the lift—curve slope, moment—curve slope, and neutral—point
position are shown. The results indicate that the primary wvariable
involved in aeroelastic phenomens 1s the dynamic pressure and that
the influence of the flight Mach number is small for wings swept
behind the Mach lines.

INTRODUCTION

In reference 1, R. T. Jones has shown that supersonic flight
may be attained with a reasonable degree of efficiency through
the use of swept wings of high aspect ratio. The use of sweep—
back, however, involves many problems of stability and comtrol,
not the least of which are assoclieted with the aerodynamic effects
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of the elastic deformation of the alrplane structure. In particular,

the longitudinal stability of the aircraft may be affected to a large

dogree since the bending and torsional deformations of the wing may

g?ii:nthe center of preossure of the 1ift forward an appreciable
stance.

These asrocelastic phonomensa occur under those f£light conditions
where the magnitude and/or the spanwise variation of the elastic
deformation of the wing varies with angle of attack. Aerocelastic
effects may therefore occur either in accelerated flight at constant
dynamic pressure or, under certain conditions, in steady level flight
with varying dynamic pressure. In the latter case, if the loading
dus to twist or camber is different than the loading due to change
of angle of attack, the trim change dus to elastlic deformation of the

wing in steady lovel flight varies’ with the dynamic pressure and

influences the stability of the airplane as indicated by the position
of the control stick as a functlion of airspeed.l

In solving aeroelastic problems, since the interrelation of the
gtructural and aerodynamic characteristics of the wing results in
mathematical camplexity, it is usually necessary to compromise to
gome extent either the structural or the aerodynamic aspects of the
problem to obtain a solution. In the present analysis, the structural
characteristics of the wing are compromised to the extent that the
Porm of the deflection curve is assumed. This assumption permits the
application of supersonic lifting—surface theory to the determination
of the load distribution, the 1lift, and the pitching-moment character—
istics of elastic wings, Additional analysis 1s necessary to deter—
mine whether it is better to use more rigorous aerodynamic theory in
aeroelastic computations, as in the present report, or to use a more
complete structural theory as in recent work by John W. Miles of
U.C.L.A. or Franklin Diederich of the NACA.

SYMBOLS

Xi1,71 Cartesian coordinates

X,y transformed Cartesian coordinates in terms of the semispan
dimension, s

17hig particular aeroelastic characteristic is not considered in the
present report which is concermed primarily with accelerated flight.
Further, the wing is considered to be weightless so that the
ameliorating influence of the distributed mass of the wing is not
accounted for in estimating the aeroelastic characteristics.
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X,y coordinates of the apex of any superposed lifting
sector

distance in the y; direction from the root section to the
intersection of the flexural axis and the tip Mach cone

distance along the flexural axis from the root section to
the intersection of the flexural axis and the tip Mach
cone

distance measured from the root section along the flexural
axis

spanwise distence in y direction from the root section to
the center of load on the half wing

wing area
taper ratio, ratio of tip chord to root chord

average chord

mean aerodynemic chord %;%E%%

local chord parallel to the plane of symmetry

root chord parallel to the plane of symmetry in terms of
the span dimension, s

aspect ratio
angle of sweepback of the flexural axis

slope of the flexural axis in a vertical plane passing
through the flexural axis

maximim load factor
bending moment at any point on the flexural axis

bending moment at the root section of the wing beam

torsional moment at any point on the flexural axis
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torsional moment at the root section ‘of the wing beam

modulus of elasticity for the wing beam material

shearing modulus for the wing beam material

moment of inertia of the wing beam

torsicnal stiffness; consté.nt

distance between the flexural exis and the center of
E:;zi;ure of the sectional 1lift in terms of the local

maximm design stress

maximm thickness of the wing at the root section
angle of attack of the root section of the wing

incremental angle of attack at any spanwise station of the
wing

angle of attack of the wing section at any spanwise station

angle of attack of the root section at which maximum load
factor is developed :

n/M2—1 vwhere M 1s the free—stream Mach number

B +times the cotangent of the angle of sweepback of the
wing leading edge

B times the cotangent of the angle of sweepback of the
wing trailing edge

B times the cotangent of the angle of sweepback of a ray w
from the apex of any superposed lifting sector !

complete elliptic integral of the second kind with modulus

(NImR)

eirplene weight




NACA TN No. 1811 5

o =

o~ plg

C

wing loading

dynemic pressure ;'-pV2>, where p 1e the mass density and
V the veloclty the free stream

1ifting pressure coefficient

load per unit span

section 1lift coefficient

1ift

1ift coefficient (A
QS

1ift coefficlient at maximm losd factor

section pitching moment of a wing section about the apex
of* the wing

pitching-moment coefficient about the apex of the wing in
torms of the mean aerodynamic chord and the wing area

the rate of change of 1ift coefficient with the angle of
attack of the root section

the rate of change of pitching-moment coefficient with the
angle of attack of the root section

the rate of change of pitching-moment coefficient with the
1ift coefficient

ANATYSTS
Wing With a Subsonic Leading Edge

In the following analysis, for convenience, the esrodynamic

loeding due to bending and that due to torsion are first treated
separately. Expressions for the combined effects of bending and
torsion are derived later.

Bending.— The aerodynamic twist® due to bending of a stream—

wise section of an elastic swept wing under accelerated flight

ZThe chenge in camber of the airfoil sections due to the distortion
of the wing surface is, of course, ignored.
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conditions is a function of the applied load and the elastic character—
istics of the wing beam. TIn order to arrive at a solution for the
aerodynamic properties of the wing without becoming involved in labo—
rious graphical analysis, some simplifying approximations must be made
regarding the elastic properties of the wing.

In a strict sense, a swept wing of conventional structural design
cannot be considered to have a flexural axis. For wings of high
aspect ratio, however, it will be assumed that a flexural axis exists,
since this assumption permits the use of simple beam theory and intro—
duces only & small conservative error.

For the purpose of analysis, the root section of the wing beam
is aspumsd to be the extension of the wing beam on a plane perpendic—
ular to the flexural axis and passing through the Intersection of the
flexural axis and the streamwlse root section. (See fig. 1.) This
simplification of the beam analysis is similar to that of reference 2.
The length of the wing beam g' 1is taken as the distance along the
flexural axis from the root to the intersection of the flexural axls
and the tip Mach cons. The semispan s of the wing is taken as
oxtending from the root section to the intersection of the flexural
axls and the tip Mach cone in a directlon perpendicular to the plane
of symmetry. The portion of the wing lying within the tip Mach cone
is 1gnored since, as shown in reference 3, very little load is carried
in this reglon and the anelysls is thereby simpllified.

The coordinate system 1s selected as shown 1n figure 2. The
origin of the coordinate system is placed at the apex of the wing,
the positive branch of the x; axis lying downstream.

The mathematical treatment may be made less tedious by trans— .
forming and nondimensionalizing the coordinates so that in the follow-

ing analysis

By
¥y =5
- X3
X=75
_ root chord
Co © )

In general, at both subsonic and supersonic speeds, selection
of the wing plan form for low drag leads to a combination of spanwise
loading end spanwise distribution of the bending resistance in the wing
beam such that the wing deflection curve is essentially parabolic. (The
ratio of M to I is constant across the span.) The deflection curve
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deviates appreciably from a parabola only if the aeroelastic effects
experienced by the ying are very large. Calculations show that, for
the usual tapered wing, the agsumption of a parebolic deflection
curve glves resulis comparsble to a more rigorous structural treatment
for deviations from rigid wing values as large as, for instance, a
30-percent logs in lift-curve slope. It seems improbable that a
designer would be interested in wings with larger deviations from~
rigid—wing characteristics. )

Since the deflection curve of the flexural axis is assumed to be
parabolic, the slope of the flexural axis is

g =M g1
EL ¥
where y' 1is measured along the flexural axis.

The incremental angle of attack of streamwise sections of the
wing is related to the slope of the flexural axis as

ap = —6 s8in A

The slope of the flexural axis in nondimensional transformed coordi—
nates may be written as

_ M 8
ET B cos A 7

The Incremental angle of attack of any stresmwise section of the
elastic wing is then

M s
ap=—grp 7 tan A

and the total angle of attack of any streamwise section is

@ = o - 3L £y tan (1)

vwhere o 18 the angle of attack of the root section of the wing.
Equation (1) gives the magnitude and distribution of twist across
the span of the wing if the magnitude of M/EI is known.

The distribution of pressure over the elastic wing due to twist
may be determined by applying known conilcal-flow solutions for super—
sonic flow. In the linearized theory, the principle of superposition
of various solutions may be used to satisfy the particular boundary
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conditions of the problem. For the elastic wing, the flow fleld
may be considered to consict of the superposition of two distinct
flow fields:

1. The flow about a flat rigid wing at an angle of attack
equal to the angle of attack of the root section

2, The flow about a twisted wing for which the angle of
attack at the root is zero

The solution for the first flow field is glven in references
4k and 5; the second flow field can be obtained by determining the
solution for a differential twist dag at one station and inte—
grating this solution across the span.

The solution for the pressure distribution at any point, corre—
sponding to a differential twist, must meet the followlng boundary
conditions (fig. 3):

1. Outboard of the station of twist, the angle of attack must
be constent and equal to the differential twist.

o, TInboard of the statlon of twist, the angle of attack of the
surface must be zero.

3. Between the swept leading edge and the Mach come, no 1lift—
ing pressures may exlst.

The conical-flow solution corresponding to these boundary condi-
tions is that for a special 1ifting sector given by Lagerstrom in
reference 6 and is expressed in the notation of the present report as

te _ 8an®? /I
qa PBr m¥l A m

Cl'|l:ll

(2)
where t defines & ray from the epex of the sector.

Figure 3 shows both a sketch of the boundary conditions to be
met by this solution and a plot of the pressure distribution given
by equation (2).

The induced pressure resulting from twist due to bending of the
elastic wing mey be found by integrating across the span of the wing.
This integration corresponds to the superposition of an infinite number
of the 1lifting sectors along the spesn, each sector having an infinites—
imal- angle of attack da,.




NACA TN No. 1811

The pressure dus to twist is then given by

Ap 8 m/? Me fno 1+t
of = o — tan A d
<9>T B2 (m+1) BT o A BT

where

g = =1 _ m(y-n)
x—£ mx—1|

The x and vy coordinates of the apex of any superposed sector
are §£,7.

The integration must be carried out from the root section of the
wing n=0 +to the value of n=7g corresponding to the last superposed
sector, the Mach cone of which encompasses the point X,y umder con—

slderation. The value of 1o 1s found by placing +t equal to —1 and
golving for 1.

- I
"o = =3 (z+y)

The integration yields at any point x,y the pressure dus to
twilat

16 n°/® Ms Xty
<é§>‘r T T 3p% (m1)2 tan Ao (=+3) mE-y (3)

To this expression must be added the conjJugate term due to the elastic
deformation of the opposite wing panel. The conjugate term may be
obtained by substituting -y for Jy. Then

Ap) _ 16 m®/® . Ms xty /ﬂ
<—<1_ T 383 (m+1)2 ten Aﬁ [(ﬁy) Xy v (=) mx+y ] (4

It should be noted that the addition of the conjugate terms adds
some very small lifting pressure in the region between the wing leading
edge and the Mach cone where no 1ifting pressure may exist. These
pressures may be canceled by the superposition of constant 1ift sectors
as noted in reference 7. Since these extraneous pressures,on the
average, amount to about 3 percent of the average pressure coefficient
over the adjacent wing surfece and, since elimination of those pressures
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would change the pressures over the surface only about one~half of
1 percent, 1t seems that in view of the additional complication
involved the cancellation of these pressures is unwarranted.

The total lifting pressure for the elastlc wing at an angle of
attack 1s then obtained by adding to equation (4) the solution for
the flat 1ifting wing. For the elastic wing, then

Ap _ __MwPa 16 mS/2 A ¥ \: (xty) [ =X
T @)z 3% (@rl)? EI Ty
* ) ) ] (5)

Examination of this equation shows that the relationship between M/EI

and o must be established before the pressure distribution can be
calculated. Since for wings with parabolic deflectlion curves the
maximum stress occurs at the point of maximm thickness, usually
the root, the maximm stress occurring at maximm load factor is

e (2) 3

and since the bending moment at any point on the span 1s a linear
function of the angle of attack,

20max @
dr apn

M
I

where omax 1s the design stress at maximum load factor, dr is the
thickness of the root section and an 1s the angle of attack at
maximm load factor; an expression for ap 1s derived later.

The equation for the pressure distribution may then be written as

Ap _ _ MmPa
a BE /mz_(%)z
5/2 a
_ 32 m tan A max_s_g_{(x_l_y) x+y+(x_y) x—Y} (6)
3p2r (m+l)2 E dr an mx—y mx+y
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The load per unit span can be obtained from an integration of equation
(6) with respect to x along any streamvise station (y=constant),

o,
..1.. = sf E <.é22 ax
4 ¥ 4 =const.
m

The integration 1s carried out from the leading edge of the wing,

x =% to the trailing edge x = %?2 and yields
2 s5/2
§-Ee ) - BB en aMRIE Sy ()
B 3% (@l)” B d oy

The functions f£;(y) and £2(y) are given in the appendix since they
are somewhat unwieldy.

Thea 1ift ccefficient may be obtained by an integration of equa~
tion (T7), spanwise from root to tip.

B
BcL=%§f§dy
(o]

The integration ylelds®

BT~ 3p%n (m+l)2 B od. ay

5/2
BCL=£E.’.2_[”I“2°‘F 32 w% o Omex S “‘Fg] (8)

The constents F; and Fp are glven by equations in the appendix.

This equatlon may be used to determine the angle of attack at
maximm load factor op which 1s needed In the foregoing equations:

®Tt may be noted that the ratio s2/S 1is essentially the same as
one—fourth aspect ratio and that the parameter s/dr is directly
related to s8'/dy, a common structural criterion.

S e e — e e e e e e = r e | —————— e e e e e e -
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_ 322 S 32 n/? omax 8
0 = fmEr, [55 Cln * 38, ()2 E E;Fz} (9) ]

The pitching—moment characteristics of the elastic wing may be deter—
mined by an integration of the pressure distribution given by equation

(6).

For any spanwise station, the section pitching moment about the
apex of the wing 1is

y+mtc
o _ ( L
q { —const

This integration yields =

5/2
s . g2 [@fam %%ﬁgmzx%’fdi—my)] (10)

The functions f5 (y) and £, (y) are given in the appendix.

The total pitching-moment coefficient about the apex of the wing
in terms of the mean aerodynamic chord is found by integration across

the span,

o g° | km2q, 32 w/2 A“ma.x 8 a :l 11)
Bn=-55 |z ® ~ 3 @)z T 4 om * (
- B [l 32 m’

__ 2 m
Bng=~8% | "R WWWATa;%] (12)

The constants Fg and F, which are functions of the aspect ra.tio,
taper, and sweepback are given in the appendix.

The previous analysis has ignored the effects of wing

twist due to torsion. The solutions obtained are, in reality, those
for wings of infinite torsional stiffness. In general, since the
flexural axis (or torsion center) is behind the center of pressure at

Torsion.—
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8ll spanwise stations of the wing, the twist of the wing due to
torsion will tend to compensate for the twist due to bending. For
wings having large angles of sweepback such as are necessary for
efficient supersonlc flight, the aerodynamic twist due to torsion
has been calculated to be about 15 to 20 percent of the twist due to
bending (for thin wings). _In such cases, the effect of the torsional
deformation on the spanwise loading may be neglected in calculating
the torsional moment. Equation (7) may be utilized in the calcula—
tion of the torsional moment in this iInstance. A complex simulta—
neous solution 1s thereby avoilded.

An expression for the torslonal moment at the root section of
the wing beam(perpendicular to the elastic axis) may be obtained by
assuming that the distance from the center of pressure to the flex—

ural axis for any section of the wing is a constant percentage of the
local chord.

Then
oy (GOBMfBLcdy
q 1

where c¢ is the local streamwise chord given by the equation

c =8 ¢Co [l-—(l-l)%}

Where X denotes the taper ratio of the wing and { the distance
from center of pressure of flexural axis in terms of the streamwise

chord. The function describing the spanwlse loading Z/q is given
by equation (7).

The equation for the torsional moment at the root may be written

as
B

T
p-E=82tc cosAfJ'- [l—(l—x)l} dy

q ° L a4 B

T P
ﬁ-ql-'-=s2<gcocosA[l %ﬂy—%(l_)‘) f%ydy:]

0

As will be shown later, 1t 1s convenient to derive the ratio of the
torsional moment at the root to the bending moment at the root. The
bending moment at the root is given as

B e et mr e i i o — e mian e ey e e
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MZ‘ 2
BTz'BcgsA f%ydy
and -
.%r-: §c° cos® A [%— (l—%.)] (13)
. E ‘
where ) 7. ¥y dy

[
o]
and corresponds to the spanwise center of pressure for the load on the

half wing. The value of Y may be determined by a mechanical or
analytical integration of equation (7).

When the assumption is made that the twist due to torsion varles
linearly across the span (or that the ratio T/GJ 1s constant across
the span), the incremental angle of attack of any section of the wing
due to torsional deflection may be written as

cosA Ts' _Tsy

B & ° GIp

L%
EI B MpdzG

and by adding this expression to the angle of twist due to bending
(equation (1)) the totel angle of twist of any section l1s

ay = o~ 3 [’m"‘ (3’_) ] (Lhe)

- 8 Omax & § L& T

Combined bending and torsion.— Expressions for the aerodynamic

properties of swept wings experiencing both bending and torsional
deformation may be obtained from equations (6) to (12) if tan A is

replaced by
[0 -(32) ]

—_—— m e A - - - [P VS S——



FACA TN Fo. 1811 15

The equation for the angle of attack at maximm load factor for
conbined bending and torsion is then

/2 T
= _@{_ﬁ_c 32 _m*® Oy s [ta.n A_<I_rli _T:IF } 1
- R @ B & el ) B

nTTi= t co [%_ (1_>,)] cos® A

In a.pblying the foregoing analysis to a specific wing, it is
convenient to use the equations to obtaln the ratio of Cm, or
CLG for the elastic wing to the value for the rigid wing. Multi-—

plying this ratio by the value of cLa. or Cmu, for the rigld wing

ag determined by the complete theory wherein the region within the
Mach cone of the tlp, and so forth, is considered, will then give
more accurate parameters for the elastic wing. Then

_ m®

8 _ 32 1% Omx g2 £u(y) _ ﬁf)'f_r_
@ B 10) -3z (@l)® E dp oy [mA (JrG Mr:l (e

Iu‘elastio .1 _ 8= /m “max s |:ta.nA _(_I__I-E &:IF_z an
CLarigia 3 pr(ml)® E dran IrG/ Ml Fy

C
mu'elastic =1 - 8= 4/1;1- = Omax g [tan A — <_.I-[£(;> E’.] E*— (18)
c. 1 E J.

marigid 3 Bﬁ(m+ ) dTaIl i Mr -

In using the preceding equations, it is necessary to solve for Q-
This, in turn, involves finding the ratio Tr/lv% which is determined

by the parameter Y (usually has a value of about 0.k0).

A solution of the combined bending and torsional deformation
effects can be obtained by assuming a value of Y, solving for
and checking the value of Y from a moment and area integration
of a plot of equation (16) to see if a second approximation is required
to determine a, more accurately.

Gn s

S . r—
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The previous equations apply primerily to flat 1ifting wings or
to0 twisted and cambered wings for which the loading due to twist and
camber is the same essentially as the loading due to change in angle
of attack, For wings with samewhat arbitrary camber a.nd/or twist,
these equations apply to all accelerated flight conditions. A solution
for the aerocelastic characteristics Iin steady level flight for such
wings must involve a comnsideration of the effects of the loading due
to the known arbitrary twist.

Wing With Supersonic Leading Edge

The foregoing enalysis has treated wings with the leading edge
swept behind the Mach cone., The same method, however, may be applied
to wings swept ahead of the Mach cone. In this case, however, the
expression for the pressure field for the incremental twist at any
spanwise station, corresponding to equation (2), is given by refer— .
ence 8 as the real part of

Ap - ho _m | gogm 1mb ' (19)

qa Br/mEL Te=]

where a,t, and m are as defined for equation (2).

Expressions for the pressui'e distribution, 1lift, moment, and load
distribution may be obtained in the sames manner as for a wing with a
subsonic leading edge although the integrations are more involved.

DISCUSSION
Supersonic Lifting-Surface Theory

The results of the foregoing analysis are best illustrated by
applying them to a specific wing. For this purpose, the wing shown
in figure L4 was selected, having the geometric and structural material
characteristics given in the table in the figure. The calculations
were made for various values of the paramster nY and for two values
of the maximim design stress.*

YE

Span load distributions for the wing are shown In figure 5 for
a Mach number of 1l.klk, a value of nl-g of 150 pounds per square foot,

4 Calculations show that the wing has sufficient depth to withstand the
maximm loading assumed without failure.
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a design stress of 30,000 pounds per square Inch, and a dynamic
pressure of 211 pounds per square foot which corresponds to flight
at 60,000 feet altitude. The load distribution curves of part (a)
of figure 5 are for the same angle of attack of the root section and
show that the elasticlty of the wing results in an appreciable
decrease in llft—curve slope. In this case, the reduction experienced
by the elastic wing amounts to 15 percent of the wvalue for the rigid
wing of the same plan form. Part (b) of figure 5 shows the load
distribution curves for constant total 1ift coefficlient. These load
distributions are of significance in illustrating how the change in
span load distribution due to elasticity may be expected to shift
the longltudinael center of pressure forward. The load distributions
as derived by what is known as strilp theory are discussed later.

Comparison of Aeroelagtic Effects at Supersonic Speed
With Incompressible Flow Solutions

In calculating 1ift and stabllity characteristics of elastic
wings, 1t should be nated that errors resulting from assuming the
extent of the wing beam as glven in figure 1 and from lgnaring the
1ift within the tip Mach cone may be minimized by using the analyti—
cal expressions which give the ratio of lift~curve slope or the
ratio of moment—curve slope for the elastic wing to that for the
rigid wing. These ratlos may be used with the rigorous values of
Cmu, and CLq, from reference 3 to obtain accurate values of

Cma' and CLOL for the elastlic wing.

Such ratlos have been computed for the wing shown in figure 4
as functions of the dynamic pressure at a flight Mach number of 1.41k.
For comparlison, the sams ratios have been computed as functions of
the dynamic pressure for incompressible flow by the theory of refer—
ence 9. Figures 6 and 7 show the results of these calculations
vwhich were made for two values of n% of 150 and 300 pounds per
square foot and two values of design“stress, 30,000 and 45,000 pounds
per squere inch., Figure 8 shows the shift in neutral point® dus to
wing elasticity as calculated from the data of figures 6 and T.

The results indicate that the aeroelastic phenomena are a little
more severe at supersonlic speed, although the aerocelastic effects are
found to be primarily a functlon of the dypnamic pressure and not of
Mach number. At a given dynamic pressure the differences in the
aeroelastic effects as computed by incompressible flow theory and by

SNeutral point is defined as the position of the center of gravity
along the mean aerodynamic chord for neutral stabllity.
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supersonic lifting—suwrface theory are found to be dus largely to the
fact that the center of pressure of the sectional 1ift is farther
forward at subsonic speed, resulting in a difference in tarsionmal
deformation which compensates somewhat for the bending deformation.
The comparison indicates that the dypnamic pressure is the primary
variable involved in determining the aeroelastic characteristics,
at least for wings swept behind the Mach linss.

It should be noted that the variation of the aeroslastic charac—
teristics with dynamic pressure given in figures 6, 7, and 8 for any
velue of n‘g*’ and opmay includes the effect of a small variation in
wing beam moment of inmertia which comes about from the manner in
which the maximum deslign stress was brought into the analysis., The
offect is not significant within the range of dynamic pressure for
which the theory applies.

In regard to the range of application of the equations, calcu—
lations made using more rigorous structural theory with simple stxrip-
theory show that the method of the present report may be expected
to give accurate estimates of aeroelastic effects as great as, for
instance, a 30-percent loss in lift-curve slope. Within such 1limits
it is expected that the estimate of the neutral point shift due to
elasticlity will be much more accurate than for analyses using
elementary aerodynamic loading.

Strip Theory

The analytical evaluation of asroelastic effects can be greatly
simplified by the use of strip theory. This simplified method of
determining the aerodynamic loading is based on the assumptlon that
the loading at any spanwise station of the wing 1s a functlon only
of the section angle of attack. For the present case, a modified
strip theory suggests itself wherein only the incremental 1ift change
due to elasticity is considered to be a function of the incremental
local angle—of—attack change due to elasticity. The loading at any
spanwise station is then given by the product of the ratio of the
local angle of attack to the angle of attack of the root section and
the expression for the rigid wing loading at any spanwise station.
Then, for strip theory

1 _ km®s

qa BX

£1(y) =&
a

The load distributions so calculated are compared with supefsonic
lifting—surface theory on figure 5. It 1is evident that this form
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of strip theory overestimates the effects of wing elasticity, but
the comparison indicates that the accuracy of strip theory in
predicting lift—curve slope is satisfactory. The shift in center of
pressure which strip theory gives, however, is much too conservative.

It 1s suggested, however, that the modified form of strip theory
may prove very useful In estimating the effects of wing elasticity on
certaln aerodynamic paramsters, the damping in roll for instance.
Further, the use of modified strip theory permits the structural
characteristics of the alrplane wing to be brought into the problem
more completely and ensables the designers to estimate wing character—
istice for all modss of deflsction,

Ames Aeronautical Laboratory, ) )
National Advisory Committee for Aeromautics,
Moffett Fleld, Calif,

APPENDIX

MATHEMATICAL DERIVATION OF LOADING FUNCTIONS
AND PLAN-FCORM CONSTANTS

The functions £;(¥), f=(¥y), & (¥), and f1 (y) end the constants
Fi, F2, E,, ¥, which appear in equations (7) to (18) of the text are
glven In this appendix.

The functions #£;(y) eand f£o(y) were developed from the
following integral:

yHmeco '

1 mg
g="® f <é2 ax

Yy q =const.

m

from which
yHmiC o
mg dx
£1(y) =

2
: /e (D)
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which yilelds

t1(y) =Tm%:/<f2?—l> y2 +ﬁ£coy + m2co2

and

JHCo yHCo
f2(3) = f " (x4y) ) m ax f " (zy) [ By &
g J
m m

which yields

f2(y) = [am(ymt%)mtyw m+3)] L/ (y+mgco+mey) (m:vmco—mty)}

li-mzmt"2

4

3y2(m+l) 2 —~1 2m(y+mpco)+mgy (m-1)
[ y8m5 2__.] ‘:cosh mb(1?1+l)y :l

+

[m(ymi;;ﬁy(mﬁ)] [ J Grpog) (m-'y"fmt%mty):l

[ 3y2(m+l)2 —, 2m(y+myco)-—nty (m-1)
A a7 ] [C"Sh : o ()5 :l

[ y2(5m41)  /2(1-m) 3y2(m+1)2 _1 3-m
* Ly Im572 _m] - [——8:51;2 } [°°Bhlm]

-

The constents F, and F, are evaluated as follows:

F; = /ﬁfl(Y) dy

e]
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which yields for my 7! 1

2
Fp = g—ﬁ;ﬁ Jm2f2+2pm?—r-aﬂz+mtm_2a_°

2 .
g B cog™L mef—ap —cosl I
2a8/2 mmyf my,
and for my = 1
1-m%)—m? 2
Fl = ﬁ( ~n )-—Ill co )/m2002+2ﬁm200+52(m2—1) + mCqo
2]112 (l—mz) o (l__]na)
CoZ —1 B(m2-1)+m2c _
+2(13mz)32 [cosl = °—ooslm]
where ’
a = mtz_mz
f = mc,
and
B
Fa =f fa(y)dy
o

which yields for my # 1

Fo = <E§m_t%> [(mfz)alz _ (Bdfﬂfz_ﬁab)evz]

e e——

T e e e e e e e i & e+ e o e e e~
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f(dmhmb)] QBb—df PR nl/2a£2
+|:8m2m~1-,2b Jpatimt % +

mg? (m+1)2e2 1 _4f-2pb g a
M [°° met @) °° mt(ml-l):'}

53(m+1)2] —1 pdtom? 1 phomf 3—m]
+ [W cosh —-——Bmt @) + cosh | ——ﬁlnt @) cosh s

£ (m+l)2 £2 (33%+4mb ) 1 dPPpb a
[ o ]{ 8v5/2 [°°S ot (L) m't(m+l)':|

1/2:-2 3
_ 3af+2pb Jer i par—p2p + 3m~/<af }+ [ B°(5mt+l) v2 (1-m) ]

kb kp2 1loms/2

+ (E%.%ﬁ) [ (Iﬂf2+Bhf_B2§;8/2_(mf2)a/2 ]

[ Hmean] (ot e + B

P2
, 22m (Lm)® . hf-2pg . n
g [ swew ~ " mew |}

[ {2 [ il - e |

_ 2Be¥3nt o 3m'/Zhf2
e VL RRRTE T
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where

| b
| d
: e
£
g
’ h
J

For mtg = 1

NACA TN No.

23

(mt—m) (m+1)

It

Zm+mmt—mt

It

2m+5mm++ 3m;

mtCo

(mm) (mg—1)

2m—mm+t+my

3m+5mm4—2m

Fp = 7m+3> {[m°02+500(3m—1)+232(m‘1) 1%/2 _ (mco?) - } |
4m2 6(m—1)

+ | Co
2m

— CO8

- ,M] WEsE) + [1

L 8(m-1)

— 3m-l]

| Sm

[ co®(m+1)2

3co(3m-1)

6(m-1)

_ Co(3m—1)(7m+3)] { [4B(m'-1)+00(3iﬂ—l)

16m®(m—1)

8(m—1) :l [N/mcoz+ﬁco(3m—l)+262(m—]_)jl

m+1J}

6 /2(1-m) 8/2

co®(mt1)? ] [cos_l 48 (1) +co(3m-1)
co(m+1)

4B (m—1)—3cs(3m—1)

i B3(m+1)2 J [~ — B(3m—1)+2mcq — Bgm+l)+2mc —3 3-m
1 (o) 3
R B/E— cosh B( +1) + cosh B( 1) — cosh —+1J

‘ | 16m Y/ 3q(m-1)2 |

8 :' { L 16mco(m-1)2

] [Jmc02+sco(3m—1)+252(m—17]
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co(19m2—10m+3)] 1 p(ml)+eo(3m-1) o 3wl
¥ [32 A/Zm(1-m) 3/% [Cos co(m+1) °08 m+l:|

N {2 [8m2co2—Upmeo(m+l) +3p2(m+1)2 ] [ W] _ 16m®/Zcq
15meo 3/2(m+1) 3 15(m+1) 3

s HEt Hlween [7)

. [33(51“1) W/2(1-m) ] _ [sgmcoa_) a/2 ]

12m5/2 15m(m+1)

The functions fg(y) and f,(y) were developed from the integral:

JHtCo

m
5 - - g2 f <g> xdx
4 v q y=const.
m

from which
yHCo ,
% xdx
SRy
v Jm2—(3/x)2
m .
Then

£5(y) = %—-2;:—8— 2 (yHmco)E-mtEy”
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m(y+myc,)
R fﬂ cosh_l -(Lm_t__o_.
2m .y
1
Also
y'l'm'bco y+ﬂco
my
X+y =y
f = XE
+(7) “4 (z+y) ey X3x +L/; (z-y) oy Xax
o )
which ylelds
8 (y+mic,)?

i | S| [

, 2y (y4mico) (Tm5)+mi %y (3m2+22m+15) ]
2)-I-m:3m-ba

s 2 L
. [ y (m3_3m —9m—5):| I:cosh_l(m_mb+mt)y+amtc°
1657/2 my (m+l)y

— cosh-l E — COBh-l(em+ )y+ § %o :l
mHl my (m+l)y
8 (y+mgeo)?
+ [ J (e o-mty) (myHmmco+mty) J [ 2hm m°

_ e y(yamic, ) (Tm5)-my®y? (3n2+22u+15) ]
2hm3m~b3

_ [ya(3m2+8m+13) Jz(l—m)]
e
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The constant Fg 1is evaluated as:

B
Fs =f fs(Y)dy -
o

kY

which ylelds for my # 1

n°r—(n2f2+0pm2rp2a) /2 | ﬁsa cosp—1. B{B+F)
6mm>a 6m Bmy,

Fq =

, T(ap-3uwf) J/nPF242puPT—ape & mf>
6m=a? 282

3 2,2 2
bl +m' m=f—a mf
+ (2111.2/2 ) (cos"'l B _ cos™t )
6a m2c, mi2c,

and for my =1

¥, = m3c o [m2co2+2pm2c—p2 (1-m2) 13/2 + Bas cosh™* m(B+co)
6m B

6m? ( 1-m2)

N co[B(l—mz)—3mzco] 2 co2+2BmR co—p2 (1-m2) . meq®
6m2 (1-m=)2 2(1-m®)=

+ co>(2+P) [cos_‘l nZco—p(1u?) — cos™t m:]
5(1m2)5/2 meo
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Also F, 1s evaluated as:

B
ri= [ ta(n)ay

which ylelds for mt # 1

F, = [.._é._. + 5df>+ B ] [me2+ﬁdf_ééb‘)3/2 ]

AN P 6b 18m%m; 3 b

2pbAf o mtE(ml)® [ dP-2Bb
+{ 5 +Bdf—62b + m—%@r [COB 1 =

ml/2a£2 [ A£2(582+bub)+3BbAr+128m2h2r2
kb }[ 38km"m, b= ]

+

+< SAdf ,_B >[(mf2)3/2]
1ll-’+m3m,b3b 18m3m,bs bp

+ %) p*|cosn BREBRE_ _ oogp-1 3 ooy _BdtEmL
i Bmi (m+1) ‘ m+1 pmy (m+1)

3

+ (ml/zf) <B_2_ " 5pdf + 5d.2f2 + aﬂfz >( /mf2+Bdf_B2b)

3b 122 8b° 3b2

L

_ (B2 , 5Bnf _ 5f%h2 2mf2> o ey ar
™ + or + 8gé— + e ( mf2+sfh-—ﬁ-g‘)

_ dfs(lamb—sdz)][ 1 _afogb L4 ]
[ 16b7/< co8 mif(m+l) c08 m (m+1)

— C
mtf(m+1)

a7

L d
o8 —_—
mt (m+1)

]
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hf3(12mg+5h2)][ 1 bf2Bg _ 2 _ kb }
[ 16g/< o8 m £ (m+1) cos my (m+1)

:31/2)<5d2 om  5h2 _ 2m )
3b= 88’8 382

[egpamemece | {(ae) )

(T[] RS - ) )
[ (o) (%) (i) | [t |

- [praedeny o) L 2 ][ () () |

where

A = 8m2+1hmPmi+10mmy+3mPmy 2 +20mm 2 +15mt >

i

B = 2mmicol Sm+Tom+5mt;)

D = 8m2-14m®mt—10mnt+3memy 2 +2omm 2 +15m>
H = 2mm,bco(8m—7nnnt—5mt)

and for mt=1

1T |5 5co(3ml) [meo2+Beo( 3m-1)+282(n-1) 13/2
" £2m3 [B () ] 2@3}{ o) }

gkl 2;3}[‘2;2? = {2
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v [00(31'1—1) ]+ ;‘f} 48 (m-1) +co(3m-1)

- oly 3 h(m—l) 8(1]1—1) [A/{mcoz+ﬁco(3m—l)+2[32 (m_l):l

_— co2 (m+1)? E:os-l 48 (m-1)+co(3m-1) — 3m—1]+ n'/2co2(3m1)
16 ,/2(1~m) 3/2 co(m+l) m+1l 8(1—m)

.p.

cosh — ﬂm_ﬂ;)_-i-_z_mgq cosh_'l 3o _ cosh e B(3m—l)+2mco:'
B(m+1) m+1 B(m+1)

+
Fla
o

283 ~/m2002+Bmco(m+l)
Tmeo(m+1)

+ (mco)

~ 4[8mPeoP—Upmeo(m+1)+38% (m+1)2]

(o) * ~JmPeoP+pmeg(m+1)
_[_B®  _ 5Bco(3m-1)
6m(m=1)  48m(m—1)2 -
. 2e®(3m1)2

00‘2 -l 2
6im(m—1)®  6(m-1) 2},/232m(m—1)+3mc0( 3m—l\) e,

, 32m%0°% | co®(63m°-30n2+21n5) [cos_l 4B (m=1) +co(3m-1)
35 (m+1) - 128 »/2m(1—m) (m-1)3 co(m+1)

~ cos™2 3m—1] 5co%(3m-1)2 _ mco® H

m+l 64 (m—1) 3 6(m—-l)2

[B (3m2+8m+13) o/2(1-m) ]+ { 2co , (5-m)[2meo—3p(m1)]
96m7/2 9m(m+1) -90m2 (m+1)2

B T i S
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(5-m) [8nPeo—12pmeo(mt1) +158% (m+1)]
¥ O’-FZOmScO((Dm{]_)z = } {[mcoz'*'ﬂco(m-!-l) 13/ 2}

- / 2cg . co(5=m) . _2co(5-m)
[(mcoz)s 2] [Qm(m:-)l) * lb51?1(ni+l)2 * 1051?1(m+l)2:|

where
T = 25m°+32m+15
V = 10meqy(3m+1)
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A

Figure 2—Coordinate system for calculation
of characteristics of elastic wings. A
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